IWATSU ELECTRIC DS-8000 Switching Waveforms Analysis Software Instruction Manual

 $@ \ 2022$ IWATSU ELECTRIC CO., LTD. All rights reserved.

Introduction

- A Thank you for purchasing our DS-8000 Switching Waveforms Analysis Software We hope you will continue to use our measurement instruments for many years to come.
- This instruction manual describes the basic operation of the DS-8000 Switching Waveforms Analysis Software, a plug-in software for the DS-8000 series Digital Oscilloscope. Please read the instruction manual carefully and understand the contents before use.

General Safety Summary

This section describes the items that you should follow in order to use this product safely and prevent injury to the human body and damage to property. Please be sure to read this section for safe use.

The Symbol and Term on this manual

		Caution statement identifies the conditions or practices, or if the items
\triangle	CAUTION	described herein are ignored that could result in injury or damage to this
		product.

Note:

- ♦ Part of the contents of this manual may be changed without notice due to improvements in performance and functions.
- \diamond It is prohibited to reprint or copy the contents of this manual without permission.
- The contents of this manual correspond to DS-8000 instrument firmware Ver 4.05, and DS-8000 Switching Waveform Analysis Software Ver 1.06.
- \diamond When disposing of this product, follow the regulations of the local government.
- All product names and brand names included in this manual are listed for identification purposes. Each is a registered trademark held by the relevant individual or corporate body. The TM and ® marks are not displayed on the trademarks or registered trademarks of each company in this manual.
- If you have any questions regarding this product, please contact our sales department or sales office (see the attached "Sales Network and Inquiries").

Revision history

 \bigcirc May 2022, 1st edition issued.

Please be sure to read for your safety.

CAUTION

•Cautions for USB memory stick use

- To remove the USB memory from the DS-8000 main unit, execute Menu>Remove USB Memory.
- Do not remove the USB memory stick from the DS-8000 main unit while the plug-in software is being installed.
- Handle the USB memory stick and the USB terminal of the DS-8000 main unit so as not to get scratches, dust, dirt, oil, etc. on them.
- Do not place the USB memory in direct sunlight, high temperature, or high humidity.

Check the contents of the package

When you receive this instrument, please check the contents. In the unlikely event that the product is out of stock or damaged during transportation, please contact the store where you purchased the product or our contact point (service center) immediately (see the attached "Sales Network and Contact Point").

Contents

- USB Memory Stick	1
- Instruction Manual	1
- Software License Agreement	1

Note: You should back up the data in USB memory just in case.

Software Version Upgrade

Please check with our sales staff or our website as the software version upgrade is applicable to each instrument. URL: https://www.iti.iwatsu.co.jp/index_e.html.

Memo

Chapter 1 Table of Contents

Introductio	n	i
General Sa	fety Summary	i
Check the	contents of the package	ii
Software V	/ersion Upgrade	ii
Chapter 1	Table of Contents	iv
Chapter 2	DS-8000 Switching Waveforms Analysis Software Overview	6
2.1 Key Fe	eatures	6
2.2 Obtain	ing a License Key	6
2.3 Installa	ation	7
2.4 Softwa	re Update	9
Chapter 3	Execution and Screen Configuration	10
3.1 Execut	ion	
3.2 Screen	Configuration	11
3.2.1 Me	easure type	12
3.2.2 Pa	rameter for measurement	12
3.2.3 Inp	Dut	12
3.2.4 Re	sult of analysis/Setup	13
3.2.5 Wa	we display, Marker, and Cursor	13
3.2.6 Op	eration button for Expand marker	15
3.2.7 Wa	weform display area	16
3.3 Analys	is execution timing	17
3.3.1 Sy	nc. with trigger	17
3.3.2 Tra	ansfer waveform or Input from file analysis timing	17
Chapter 4	Measurement Parameters and Analysis Details	
4.1 Comm	. Tab	
4.1.1 Ty	pe	18
4.1.2 Un	it of time	18
4.1.3 An	alysis range	18
4.1.4 Pa	rameter file	19
4.1.5 Sa	ve	19
4.2 Wavef	orm Display Parameter Setting	20
4.2.1 Di	splay	20
4.2.2 Na	me	20
4.2.3 Ch	annel	20
4.3 Turn o	n Measurement	21
4.3.1 Tu	rn on Parameters and Analysis Results	21

4.3.2 V _{CE} / V _{DS} Tab	
4.3.3 I _C / I _D Tab	
4.3.4 V_{GE} / V_{CIN} / V_{GS} Tab	24
4.3.5 Power Tab	
4.3.6 Result of analysis	27
4.4 Turn off Measurement	
4.4.1 Turn off Measurement and Analysis Results	
4.4.2 V _{CE} / V _{DS} Tab	
4.4.3 I _C / I _D Tab	
4.4.4 V_{GE} / V_{CIN} / V_{GS} Tab	
4.4.5 Power Tab	
4.4.6 Result of analysis	
4.5 Reverse recovery measurement	
4.5.1 Reverse recovery parameters and analysis results	
4.5.2 V _{EC} / V _{AK} Tab	
4.5.3 I _E / I _F Tab	
4.5.4 V_{GE} / V_{CIN} / V_{GS} Tab	40
4.5.5 Power Tab	41
4.5.6 Result of analysis	42
4.6 Short circuit Measurement	
4.6.1 Short circuit Parameters and Analysis Results	44
4.6.2 V _{CE} / V _{DS} Tab	45
4.6.3 I _C / I _D Tab	46
$4.6.4 \ V_{GE} \ / \ V_{CIN} \ / \ V_{GS} \ Tab \ \ldots$	47
4.6.5 Power Tab	
4.6.6 Result of analysis	
Chapter 5 Appendix	50
5.1 CSV file format in "Input from file"	
5.2 Data Format at Save	

Chapter 2 DS-8000 Switching Waveforms Analysis Software Overview

This chapter provides an overview of the switching analysis software for the DS-8000, how to install this plug-in software on the DS-8000 series, and how to update this plug-in software.

2.1 Key Features

Switching Analysis Software for DS-8000 is a plug-in software to be installed in DS-8000 series digital oscilloscopes. It analyzes the dynamic characteristics of power devices and displays the analysis results and waveforms on the screen.

- Target devices to be analyzed are IGBTs, IPMs, and MOSFETs.
- Analyzes turn-on, turn-off, reverse recovery, and short circuit, and displays analysis results based on measurement parameters.
- Waveforms during analysis can be displayed.
- Measurement parameter files can be saved and loaded.
- Waveform data can be saved and loaded.
- Waveform data specified by the cursors can be analyzed.

2.2 Obtaining a License Key

A license key is required to install this plug-in software. License keys consist of 12-digit alphanumeric characters and must be purchased. To purchase a license key, you will need the Product ID of the DS-8000 series main unit, so please contact the sales representative. The following shows how to check the product ID on the DS-8000 series main unit.

Select Menu > About on the DS-8000 series main unit to display the following.

About	×	
IWATSU DS-8108 Dig	ital Oscilloscope	Product ID
Serial number	M201300005	
Product ID	610683568365	
Software version	4.00	
Build date	2022/02/02 09:25:29	
Driver version	2.03	
DTC version	3.0006	
ADM version	3.0009	
HTS version	1.008	
STC version	2.000	
GLH version	1.11	
FP version	1.01	
Copyright(c) 2020 IW	ATSU ELECTRIC CO.,LTD.	
License informat	ion	

Fig 2.1 Product ID

2.3 Installation

The installation procedure for this plug-in software is described below.

1). Insert a USB Memory Stick containing the switching analysis software object into the USB terminal of the DS-8000 series main unit, then select Menu > Utilities > Plugin tab, and click "Import".

Fig 2.2 Plugin Tab

2). The "Select File" screen will appear, browse to the USB Memory Stick you purchased and select the switching analysis software object (zip file) and click "OK".

Select File		×
4.00_20220202_092529/0.01/		
File name	Date	Size
DsoPlugin.zip	2022/02/02 18:56:26	237.5 kB
File name DsoPlugin.zip	Ok	Cancel

Fig 2.3 Select File Screen

3). The switching analysis software is incorporated into the software of the DS-8000 main unit as shown below.

Utilities				X
Display Date & Time	Operation	Power management	Plugin	Calibration
No. Model Descr	ption	Version	Enabled	
1 DS-801 Switcl	ning Waveform	is Analysis 0.01		Delete
2				Import

Fig 2.4 Plugin Tab

4). Enable the plug-in software. If you set "Enabled" to "On", the license key entry screen will appear. Click on the entry field, a software keyboard will appear, enter the license key, and click OK.

Fig 2.5 License Key Entry Screen

5). The following message will be displayed. Click "OK", turn off the DS-8000 series main unit, and then turn it on again.

	X
Reboot the oscilloscope to enable this plugin.	
ОК	

Fig 2.6 Reboot Message

6). Press the Menu button on the DS-8000 series main unit to confirm that the plug-in software is installed.

2.4 Software Update

The following is a description of how to update the plug-in software.

1). Disable the plug-in software: in the DS-8000 series, select Menu > Utilities and select Plugin tab, then turn Enable Off in the plugin software.

Fig 2.8 Plugin Tab

2). Turn off the power of the DS-8000 series and then reboot it. Then, select Menu > Utilities again, and select the "Plugin" tab. The Delete button is displayed as shown below, click Delete button to delete the plug-in software.

Fig 2.9 Plugin Tab

3). After deleting the plug-in software, you will see the following screen. Then, reinstall the updated plug-in software following to the procedure described in 2.3 Installation.

Fig 2.10 Plugin Tab

Chapter 3 Execution and Screen Configuration This chapter describes how to execute the switching analysis software for DS-8000 and its screen configuration.

3.1 Execution

To start the switching analysis software for DS-8000, click "Switching Waveforms ..." in the DS-8000 menu.

Fig 3.1 Execution

3.2 Screen Configuration

When "Switching Waveform Analysis" is executed, each display area is divided as shown below.

Fig 3.2 Whole Screen

3.2.1 Measure type

In "Measure type", basic measurement items are selected. For the parameter settings of each "Measure type", please refer to "Chapter 4: Measurement Parameters and Analysis Details" and thereafter.

Fig 3.3 Measure type

Table 3.1 Measure type Tab Items

Measure Type	Description
Turn on	Analyze the turn-on dynamic characteristics of switching devices such as IGBTs, IPMs, and MOSFETs.
Turn off	Analyze the turn-off dynamic characteristics of switching devices such as IGBTs, IPMs, and MOSFETs.
Reverse recovery	Analyze the reverse recovery characteristics of freewheel diodes (FWDs) in switching devices such as IGBTs, IPMs, and MOSFETs.
Short circuit	Performs short-circuit analysis during arm short-circuit.

3.2.2 Parameter for measurement

"Parameter for measurement" area is used to set the conditions for analysis and measurement, and consists of five tabs, the names of which change depending on the selected "Measure type". See "Chapter 4: Measurement Parameters and Analysis Details" for more detail.

Fig 3.4 Parameter for measurement

3.2.3 Input

The Input area selects the method of importing the waveform to be analyzed into this application.

Fig 3.5 Input

Table 3.2 Input se	lection items
--------------------	---------------

Input method	Description
"Sync. with trigger" Checkbox	Waveforms are captured and analyzed in synchronization with the waveform capture of the main unit software.
	The number of waveform data that can be imported is between 100 and 1500000.
	When this button is pressed, the waveforms captured by the main unit software are
"Transfer waveform" Button	transferred to this software for analysis.
	The number of waveform data that can be imported is between 100 and 1500000.
"Input from file" Button	Reads the CSV file output by Save (see 4.1.5 Save) and imports the waveform data into this software. See "5.1 CSV file format in "Input from file"" for the format of the CSV file.

3.2.4 Result of analysis/Setup

The "Result of analysis" tab displays the analysis results of the dynamic characteristics; and the "Setup" tab displays the current settings.

Result of analy.	<i>sis</i> Setup			
Result of analysis -Turn off				
Item	Value	Unit		
VCE	628.659	۷		
IC	151.800	A		
VCEP	755.600	V		
toff	0.790	μs		
tf	0.286	μs		
td(off)	0.504	μs		
Eoff	17.143	mJ		
tc(off)	0.430	μs		
Power Max	94.489	kW		
dV/dt	4.236	kV/μs		
dV/dt Max	11.350	kV/μs		
dI/dt	-1.150	kA/μs		

3.2.5 Wave display, Marker, and Cursor

In the "Wave display, Marker, and Cursor" area, settings related to waveform display, marker display for specifying the analysis range, and cursor display are configured. When the cursor display is on, the measurement results by the cursor is displayed in the Measure result of cursor area.

White background	Measure result of cursor
Bold line	Time:906.06 ns
Marker	VCE :-2.5 V
	IC : 149.6 A
Cursor	VGE :-1.3 V
	Power : -0.374 kW

Table 3.3 Checkboxes

Checkbox	Description
White background	When checked, the background of the waveform display area will display in white.
Bold line	When checked, the waveform is displayed with a bold line.
Marker	When checked, measurement markers are displayed at the bottom of the waveform display area. The range of the measurement markers will be the range to be analyzed. Refer to "4.1.3 Analysis range" for setting the marker range. (See Fig 3.8 Example of Measurement Markers Display.)
Cursor	When checked, cursor and magnification markers appear at the bottom of the waveform display area. (See Fig 3.9 Example of Cursor and Magnification Markers.)

This range is defined as the area to be analyzed.

Fig 3.8 Example of Measurement Markers Display

Fig 3.9 Example of Cursor and Magnification Markers

Table 3.	4 Measure	result c	of cursor

Measure result of cursor	Description
Time	Displays the time at the cursor with the left end of the waveform display area as the reference (0sec).
VCE	Displays the voltage value of the V_{CE} waveform at the cursor position.
Ic	Displays the current value of the I _C waveform at the cursor position.
V _{GE}	Displays the voltage value of the V_{GE} waveform at the cursor position.
Power	Displays the power value of the power (POW) waveform at the cursor position.

3.2.6 **Operation button for Expand marker** Operation buttons in the "Operation button for Expand marker" area are used to operate the expansion marker and to zoom in on the waveform in the time (horizontal) axis.

Fig 3.10 Operation buttons for Expand marker

Table 3.5 Operation buttons for Expand marker

Operation buttons for Expand marker	Description
Left \triangle	Sets a left magnification marker at the cursor position.
$Right \triangle$	Sets a right magnification marker at the cursor position.
Expand \triangle - \triangle	Magnifies the waveform in the direction of the time axis within the range of the left and right magnification markers.
Expand→←	Scales down the waveform in the direction of the time axis.
Undo	Reset to the initial display at the time of waveform acquisition.

3.2.7 Waveform display area

The waveforms captured according to the Input settings are displayed in the Waveform display area. Each readout is shown in the figure below.

Fig 3.11 Waveform display area

3.3 Analysis execution timing

The analysis of this software is performed at the timing of the execution of Transfer waveform or Input from file. Therefore, to obtain correct analysis results, it is necessary to execute "Transfer waveform" and "Input from file" after setting various measurement parameters. The analysis execution flow is shown below.

3.3.1 Sync. with trigger

When "Sync. with trigger" is checked, the analysis timing is synchronized with the main unit software waveform acquisition operation as shown below.

Fig 3.12 "Sync. with trigger" timing

3.3.2 Transfer waveform or Input from file analysis timing

When "Transfer waveform" or "Input from file" is executed, the analysis timing is as followed.

Fig 3.13 Analysis timing of "Transfer waveform" or "Input from file"

Chapter 4 Measurement Parameters and Analysis Details This chapter describes the measurement parameters for each Measure type of the switching analysis software for DS-8000 and its analysis contents.

4.1 Comm. Tab

The "Comm." tab sets measurement parameters common to all Measure types.

Paramet	ter for	measi	urement			
VCE	IC	VGE	Power	Со	mm.	
Туре			IGBT	▼		
Unit	oftin	ne	μs	▼		
۵na	lucic r	ango	Cursor	ran	ge of DSO	
Alla	IYSIST	ange	-6.0div	\sim	6.0div	
Para	imete	r file				
	Recall		Save	nitia	lize	
Save						
	Wav	eform	only			
Sa	ave sc	reen	Save data			

4.1.1 Type

In Type, select the type of device to be analyzed from IGBT, IPM, and MOSFET.

4.1.2 Unit of time

In Unit of time, select the unit of time to be displayed in the analysis results from ms, µs, or ns.

4.1.3 Analysis range

In Analysis range, select the range for dynamic characteristic analysis as shown in the table below.

Cursor range of DSO Check Box	Range for Dynamic Characteristic Analysis		
On	In the DS-8000 main unit software, the range specified by the two-time axis cursors is the target range for dynamic characteristic analysis. If the time axis cursors are not displayed, the range +1div from the left end and -1div from the right end is analyzed.		
Off	The center of the screen in the switching analysis software is 0div, and the range specified by the number of divisions is the target range for dynamic characteristic analysis. If Marker is checked, measurement markers are displayed in the waveform display area. (See Fig 3.8 Example of Measurement Markers Display.)		

Table 4.1 Analysis range

4.1.4 Parameter file

The measurement parameters set by the switching analysis software can be saved/recalled to/from parameter files. All measurement parameters can be initialized. When shutting down, the measurement parameters are automatically saved, and the saved measurement parameters are recalled at the next startup.

Parameter file Button	Target Range for Dynamic Characteristic Analysis
Recall	Recall parameters from a parameter file in the DS-8000's internal memory or USB memory. The extension is xxx.dcp.
Save	Save parameters to a parameter file in the DS-8000's internal memory or USB memory. The extension is xxx.dcp.
Initialize	Initializes measurement parameters.

Table 4.2 Save/Recal	l/Initialize	parameter files
----------------------	--------------	-----------------

4.1.5 Save

"Save" allows you to save the measurement parameters, analysis results, and waveform data in CSV file format. The button operates as shown in the table below, depending on the status of the "Waveform only" checkbox. For data format, see 5.2 Data Format at Save.

Table 4.3 Save data Operation

Button	"Waveform only" Check Box	Operation
Come data	Unchecked	Measurement parameters and analysis results are output as CSV files.
Save data	Checked	Measurement parameters, analysis results, and waveform data are output as CSV files.

4.2 Waveform Display Parameter Setting

This section describes settings related to common waveform displays on each measurement parameter setting tab.

4.2.1 **Display**

If "Display" is checked, the corresponding waveform is displayed; if not checked, the waveform is not displayed. Also, clicking on RGB Selection displays the Select Color screen shown below, allowing you to change the waveform color.

Parameter for measurement Power 🗸 Display FFFF00 VCE CH1 ▼ Conversion ratio 1.0 Eon end 5% dV/dt range 10% 90% Smoothing Off V

Fig 4.1 Waveform display settings

Fig 4.2 Select Color Display

4.2.2 Name

Name allows you to change the name of the waveform with up to 31 characters.

4.2.3 Channel

Channel sets the waveform data acquisition channel for each measurement parameter setting tab. Select channels in the DS-8000 main unit software from CH1 to CH8.

4.3 Turn on Measurement

This section describes the measurement parameter settings when the Measure type is set to "Turn on", and the contents of the analysis results.

4.3.1 Turn on Parameters and Analysis Results

The following figure shows the relationship between measurement parameters and analysis results for the turn-on waveform.

Fig 4.3 Measurement parameters and analysis results during Turn-on measurement

$4.3.2 \ V_{CE} \ / \ V_{DS} \ Tab$

If the Measure type is IGBT or IPM, set the parameters related to collector to emitter voltage (V_{CE}); if the Measure type is MOSFET, set the parameters related to drain to source voltage (V_{DS}).

Parameter for measu	rement		
VCE IC VGE	Power	Comm.	
🗸 Display		FFFF00	
Name	VCE		
Channel	CH1	V	
Conversion ratio	1.0		
Eon end	5%		
dV/dt range	90%	\sim 10%	
Smoothing	Off	V	

Fig 4.4 V_{CE} / V_{DS} Tab

Parameter	Description	Default	Range	Resolution
	The analysis is performed by multiplying	1.0	0.1 to 1000	0.1
Conversion ratio	the value of the imported waveform by a conversion factor			
Eon end	Sets the endpoint of the turn-on loss Eon measurement in %. The bottom level is set to 0% and the top level to 100%.	5%	0% to 99%	1%
dV/dt range	range Sets the range over which dV/dt is to be determined. Set the starting point (left setting box) and the ending point (right setting box) in %. The bottom level is 0% and the top level is 100%		1% to 99%	1%
Smoothing	Voltage waveform smoothing process setting	Off	Off, 3 points, 5 points	

$4.3.3 \ I_C \ / \ I_D \ Tab$

If the Measure type is IGBT or IPM, set the parameters related to collector current (I_c); if the Measure type is MOSFET, set the parameters related to drain current (I_D).

Fig 4.5 $I_{C}\,/\,I_{D}$ Tab

Parameter	Description	Default	Range	Resolution
Conversion ratio	Analysis is performed by multiplying the waveform value imported by the DS-8000 main unit software by a conversion factor		0.1 to 1000	0.1
Tr range	Yr range Set the start point (left setting box) and end point (right setting box) of the rise time measurement in %. The bottom level is 0% and the top level is 100%.		1% to 199%	1%
Trr range	Range of the left diagonal (-dI/dt) of the protrusion. The top level is set to 0% and the peak level to 100%.	90% to 50%	1% to 99%	1%
Eon start	Sets the starting point of turn-on loss Eon measurement in %. The bottom level is set to 0% and the top level to 100%.	10%	0% to 99%	1%
High level	If checked in Manual, the top level is set by the current value.	1 A	0 A to 100 A	0.1 A
High level Detect at	If not checked in Manual, the IC average value within ± 0.25 div of the position specified in the time axis is used as the High level.	11 div	1 div to 11.5 div	0.1 div
Smoothing	Current waveform smoothing process setting	Off	Off, 3 points, 5 points	

4.3.4 VGE / VCIN / VGS Tab

If the Measure type is IGBT or MOSFET, set the parameters related to gate voltage (V_{GE} / V_{GS}); if the Measure type is IPM, set the parameters related to control voltage (V_{CIN}).

Parameter for measu	rement
VCE IC VGE	Power Comm.
🗸 Display	00FFFF
Name	VGE
Channel	СН3 🔻
Conversion ratio	1.0
Ton start level	0.0 V ▼
Smoothing	Off 🔻

Fig 4.6 V_{GE} / V_{CIN} / V_{GS} Tab

Table 4.6 V	$V_{\rm GE}$ / ${ m V_{CIN}}$ /	V _{GS} Tab	Setting
-------------	---------------------------------	---------------------	---------

Parameter	Description	Default	Range	Resolution
	Analysis is performed by multiplying the	1.0	0.1 to 1000	0.1
Conversion ratio	waveform value imported by the DS-8000 main			
	unit software by a conversion factor.			
		0.0 V	0 to 1000 V	0.1
ton Start Level	Set the top Start Level by voltage value	(IGBT,		
(V)	Set the ton Start Level by voltage value.	MOSFET)		
		1.5 V (IPM)		
		50%	0 to 100%	1%
	Sat the ten Start Lavel in 0/		(IGBT,	
ton Start Level	Set the ton Start Level in $\frac{7}{6}$.		IPM)	
(±%)	(See Table 4.7 ton Start Level and Gate		-100% to	
. ,	Voltage)		100%	
			(MOSFET)	
ton Start Lavel	Sets the polarity of the gate voltage that detects	+(Rising)	+(Rising),	
(Polority)	the start of ton. (See Table 4.7 ton Start Level		-(Falling)	
(1 Olarity)	and Gate Voltage)			
	Cata valtage waveform smoothing process	Off	Off,	
Smoothing	softing		3 Points,	
-	setting		5 Points	

Туре	ton Start Level (±%)	Range for which ton Start Level can be set (arrow range)			
IGBT	Valid only for +(Rising) % of bottom level , above level 0	Top Level 0 Bottom			
IPM	Valid only for -(Falling) Level 0 = 0% Top Level = 100%	Top Level 0 $100\% = Top $ Bottom			
MOSFET	Valid for both +(Rising) / -(Falling) Top Level = 100% Level 0=0% Bottom Level = -100%	Polarity: + (Rising) Top Level 0			

Table 4.7 ton Start Level and Gate Voltage

4.3.5 Power Tab

The Power Tab sets items related to power (POW). Power (POW) is calculated by the following formula.

F	aramet	ter for	meası	ureme	ent			
	VCE	IC	VGE	Pov	ver	Comr	n.	
	~	Displ	ay		_		00F	F00
	Leve	el 0 (fr	om bot	ttom)	5 c	liv	V	
	Unit				k٧	I	V	
	kW/	div (0:	Auto)		0k	W/div		
	tc pa	arame	eter		ו : v :	10% 10%		
	Neg	ative	parts		Ad	d as it i	s ▼	

 $POW = V_{GE} \times I_C$

Fig 4.7 Power Tab

Parameter	Description	Default	Range	Resolution
Level 0 (from bottom)Set the 0 level of the displayed waveform in terms of the number of graticules (div) from the bottom edge of the screen.5		5 div	0 div to 9 div	1 div
Unit Sets the SI prefix to be displayed in units of power.		kW	W, kW, MW	
kW/div (0:Auto)	Sets the power unit per div. If blank or 0, it is automatically calculated.	0	0 kW/div to 100 kW/div	1 kW/div
tc parameter I (%), V (%)	Set the respective levels $I(\%)$ and $V(\%)$ of the rising edge of I_C and the falling edge of V_{CE} in %.	I: 10% V: 10%	0% to 100%	1%
Negative parts Sets the treatment for negative values when calculating switching losses.		Add as it is	Add as it is, Exclude, Add Absolute	

4.3.6 **Result of analysis** The table below shows the meaning of the <u>analysis results</u>.

Result of analysis Setup							
Result of analysis -Turn on							
	Item	Value	Unit				
	VCE	104.810	v				
	IC	70.356	A				
	ICP	198.000	А				
	Irr	127.644	A				
	ton	0.284	μs				
	tr	0.050	μs				
	td(on)	0.234	μs				
	Eon	0.515	mJ				
	Power Max	5.424	kW				
	dI/dt	1.138	kA/μs				
	dI/dt Max	2.344	kA/μs				
	-dl/dt	-1.964	kA/μs				
	dV/dt	-503.654	V/µs				
	dV/dt Max	-3.125	kV/μs				

Fig 4.8 Result of analysis area

	Table 4	.9 Res	sult of	analysis
--	---------	--------	---------	----------

	Result of Anal	ysis	Description	Unit
IGBT	IPM	MOSFET		
V	CE	V _{DS}	(Top level – bottom level) of V _{CE} or V _{DS}	V
1	Ċ	ID	(Top level - bottom level) of I _C or I _D	Α
Ie	СР	IDP	(Peak level - bottom level) of I _C or I _D	Α
	Irr		Reverse recovery current. (Peak level - top level) of I_C or I_D	А
			Turn-on time. The period shown below.	s
			Start Point	
			\triangleright For IGBTs: The starting point is the point where the V _{GE} specified level is	
			crossed with positive polarity. If it does not cross, it is the starting point of	
			the analysis.	
	ton		\triangleright For IPMs: The starting point is the point where the V _{GE} specified level is	
			crossed with negative polarity. If it does not cross, it is the starting point of	
			the analysis.	
			End Point	
			The end point is the tr end pint. If it does not cross, it is the end point of the	
			analysis.	
	Tr		The rising time. Tr range time. The rising time of I.	s
td(on)		td(on)	Turn-on delay time. (ton – Tr)	s
			Turn-on loss. The energy losses (mJ) between the time below.	J
	Eon		Start point: Starting point for I _C switching loss measurement	
			• End point: End point for V _{CE} switching loss measurement	
			Switching turn-on time, the time between the rising edge of I and the falling	W
tc(on)			edge of V (parameter).	
			Reverse recovery current. The time of the Trr range. Falling time of the	s
	Irr		protrusion of I.	
	Power Max		Maximum value of Power	W
	dI/dt		Slope of Tr range of Ic	A/s
	dI/dt Max		Maximum value of the derivative of adjacent points in the dI/dt range (3-point	A/s
			moving average)	1

-dI/dt	Slope of falling edge of Trr section	A/s
dV/dt	The slope of the falling edge of V	V/s
dV/dt Max	Maximum value of dV/dt	V/s

4.4 Turn off Measurement

This section describes the measurement parameter settings and analysis results when "Measure type" is set to "Turn off".

Measure type(Turn on	🔵 Turn off	Reverse recovery	O Short circuit
---------------	---------	------------	------------------	-----------------

4.4.1 Turn off Measurement and Analysis Results

The following figure shows the relationship between measurement parameters and analysis results for the turn-off waveform.

Fig 4.9 Measurement parameters and analysis results for Turn off measurement

$4.4.2 \ V_{CE} \ / \ V_{DS} \ Tab$

If the Measure type is IGBT or IPM, set the parameters related to collector to emitter voltage (V_{CE}); if the Measure type is MOSFET, set the parameters related to drain to source voltage (V_{DS}).

Ρ	Parameter for measurement							
	VCE	IC	VGE	Power	Cor	nm.		
		Displa	ıy		- FF	FF00		
	Nam	e		VCE				
	Char	nnel		CH1	▼			
	Conv	versio	n ratio	1.0				
	Eoff	start		5%				
	dV/d	t rang	je	10%	\sim	90%		
	High	level		Man	ual			
	Smo	othin	g	Off	▼			

Fig 4.10 V_{CE} / V_{DS} Tab

Table 4.10 V_{CE} / V_{DS} Tab Setting

Parameter	Description	Default	Range	Resolution
	Analysis is performed by multiplying the	1.0	0.1 to 1000	0.1
Conversion ratio	waveform value imported by the DS-8000 main			
	unit software by a conversion factor.			
	Sets the starting point for turn-off loss Eoff	5%	0% to 99%	1%
Eoff start	measurement in %. The bottom level is set to 0%			
	and the top level to 100%.			
	Sets the range over which dV/dt is to be	10% to 90%	1% to 99%	1%
	determined.			
dV/dt range	Set the starting point (left setting box) and the			
	ending point (right setting box) in %. The bottom			
	level is 0% and the top level is 100%.			
	"Manual" Check Box	100 V	0V to 1,000 V	0.1 V
	Unchecked: Set the High level as desired within			
High level	the range shown to the right.			
	Checked: Automatically sets the top level to			
	High level.			
Smoothing	Voltage waveform smoothing process setting	Off	Off, 3 points,	
Shioouning	voltage waveloini shiootining process setting		5 points	

$4.4.3 \ I_C \ / \ I_D \ Tab$

If the Measure type is IGBT or IPM, set the parameters related to collector current (I_C); if the Measure type is MOSFET, set the parameters related to drain current (I_D).

Fig 4.11 $I_C\,/\,I_D$ Tab

Table 4.11 I_C / I_D Tab Setting

Parameter	Description	Default	Range	Resolution
	Analysis is performed by multiplying the	1.0	0.1 to 1000	0.1
Conversion ratio	waveform value imported by the DS-8000 main			
	unit software by a conversion factor.			
	Set the starting point (left setting box) and the	90% to 10%	1% to 90%	1%
Tfrance	ending point (right setting box) for the fall time			
11 lange	measurement in %. The bottom level is 0% and			
	the top level is 100%.			
	Sets the endpoint of the turn-on loss Eoff	2%	0% to 99%	1%
Eoff end	measurement in $\%$. The bottom level is set to 0%			
	and the top level to 100%.			
	Sets the range over which dI/dt is to be	80% to 40%	1% to 99%	1%
	determined.			
dI/dt range	Set the starting point (left setting box) and the			
	ending point (right setting box) in %. The bottom			
	level is 0% and the top level is 100%.			
C	Current waveform smoothing process setting	Off	Off, 3 points,	
Smooning	Current waverorm smoothing process setting		5 points	

4.4.4 VGE / VCIN / VGS Tab

If the Measure type is IGBT or MOSFET, set the parameters related to gate voltage (V_{GE} / V_{GS}); if the Measure type is IPM, set the parameters related to control voltage (V_{CIN}).

Parameter for measurement						
VCE IC VGE	Power	Comm.				
🗸 Display		O0FFFF				
Name	VGE					
Channel	CH3					
Conversion ratio	1.0					
Toff start level	13.5	▼ ▼ ○+				
Smoothing	Off					

Fig 4.12 V_{GE} / V_{CIN} / V_{GS} Tab

Table 4.12 V_{GE} / V_{CIN} / V_{GS} Tab Setting

Parameter	Description	Default	Range	Resolution
Conversion ratio	Analysis is performed by multiplying the waveform value imported by the DS-8000 main unit software by a conversion factor.	1.0	0.1 to 1000	0.1
toff start level (V)	Set the toff start level in terms of voltage value.	13.5V(IGBT, MOSFET) 2.0V(IPM)	0 to 1000 V	0.1
toff start level (±%)	Set the toff start level in %. (See Table 4.13 toff start level and Gate voltage)	50%	0 to 100% (IGBT, IPM) -100 to 100% (MOSFET)	1%
toff start level (Polarity)	Sets the rising/falling polarity of the gate voltage that detects the start of toff. (See Table 4.13 toff start level and Gate voltage)	+(Rising)	+(Rising), -(Falling)	
Smoothing	Gate voltage waveform smoothing process setting	Off	Off, 3 points, 5 points	

Туре	toff start level (±%)	toff start level (±%)Range within which toff start level can be set (arrow range)					
IGBT	Only valid for - (falling) Level 0: 0% Top level: 100%	Top Level 0 $100\% = Top$ Bottom					
IPM	Only valid for + (rising) Level 0: 0% Top level: 100%	Top Level 0 \cdots toff start level 0% Bottom					
MOSFET	Valid for both + (rising) / -(falling) Top level: 100% Level 0: 0% Bottom level: -100%	Polarity: + (Rising) Top Level 0 $$					

Table 4.13 toff start level and Gate voltage

4.4.5 Power Tab

The Power Tab sets items related to power (POW). Power (POW) is calculated by the following formula.

$$POW = V_{GE} \times I_C$$

Parameter for measurement							
VCE	IC	VGE	Рои	/er	Comr	n.	
 Image: A start of the start of	Displ	ау)	00	FF00
Leve	el 0 (fr	om bot	ttom)	5 d	liv	▼	
Unit				kW	I	▼	
kW/	div (0:	:Auto)		0k'	W/div		
tc pa	arame	eter		I C V C)%)%		
Neg	ative	parts		Ad	d as it i	s 🔻	

Table 4.14 Power Tab Setting

Parameter	Description	Default	Range	Resolution
	Set the 0 level of the displayed waveform in	5 div	0 div to 9 div	1 div
Level 0 (from bottom)	terms of the number of graticules (div) from the			
	bottom of the screen.			
Unit	Sets the SI prefix to be displayed in units of	kW	W, kW, MW	
Ollit	power.			
1-W/div (0. Auto)	Sets the power unit per div. If blank or 0, it is	0	0 kW/div to	1 kW/div
KW/div (0.Auto)	automatically calculated.		100 kW/div	
to parameter	Set the respective levels V(%) and I(%) of the	I: 10%	0% to 100%	1%
I(%) V(%)	rising edge of V_{CE} and the falling edge of I_{C}	V: 10%		
1(70), (70)	in %.			
Negative parts	Sats the treatment for negative values when	Add as	Add as it is,	
	calculating switching losses	it is	Exclude,	
	calculating switching losses.		Add Absolute	

4.4.6 **Result of analysis** The table below shows the meaning of the analysis results.

Re	esult of analy.	<i>sis</i> Setup				
Result of analysis -Turn off						
	ltem	Value	Unit			
	VCE	628.659	V			
	IC	151.800	A			
	VCEP	755.600	V			
	toff	0.790	μs			
	tf	0.286	μs			
	td(off)	0.504	μs			
	Eoff	15.978	mJ			
	tc(off)	0.000	μs			
	Power Max	94.489	kW			
	dV/dt	4.236	kV/μs			
	dV/dt Max	11.350	kV/μs			
	dl/dt	-1.150	kA/μs			

Fig 4.13 Result of analysis display

	Result of Analy	/sis	Description	Unit
IGBT	IPM	MOSFET		
V	CE	VDS	(Top level - Bottom level) of V _{CE} or V _{DS}	V
Ι	C	ID	(Top level - Bottom level) of I _C or I _D	А
Ic	EP	Idsp	(Peak level - Bottom level) of ICE or IDS	А
	toff		Turn-off time. Time from toff start point to I _C bottom level.	S
	tf		Falling time. The time from the falling edge of the I_C to the bottom level of	S
	u		the I _C .	
td(off)		td(off)	Turn-off delay time. Time from toff start point to Ic bottom level.	s
			Turn-off loss. Energy loss (mJ) in the following ranges	J
	Eoff		Start point: Switching loss measurement start point of VCE	
			 End point: Switching loss measurement end point of I_C 	
	tc(off)		Switching turn-off time, the time from the rise of V_{CE} to the I _C bottom level.	S
	Power Max		Maximum Power	W
dV/dt			Slope of dV/dt range of V _{CE} or V _{DS}	V/s
	dV/dt Max		Maximum value of dV/dt in dV/dt range	
	dI/dt		Slope of dI/dt range of I _C or I _D	

4.5 Reverse recovery measurement

This section describes the measurement parameters when Measure type is set to "Reverse recovery" and the contents of the analysis results.

4.5.1 Reverse recovery parameters and analysis results

The reverse recovery measurement automatically determines the direction of the peak current IEP of IE. The relationship between measurement parameters and analysis results for the IEP falling type (Fig 4.14 Measurement parameters and analysis results during reverse recovery measurement (IEP falling type)) and IEP rising type (Fig 4.15 Measurement parameters and analysis results during reverse recovery measurement (IEP rising type)) is shown below.

Fig 4.14 Measurement parameters and analysis results during reverse recovery measurement (I_{EP} falling type)

Fig 4.15 Measurement parameters and analysis results during reverse recovery measurement (I_{EP} rising type)

$4.5.2 \ V_{EC} \ / \ V_{AK} \ Tab$

Sets parameters related to the voltage across the freewheeling diode (FWD) terminals. If the Measure type is IGBT or IPM, set the parameters related to emitter-collector voltage (V_{EC}); if the Measure type is MOSFET, set the parameters related to anode-cathode voltage (V_{AK}).

Parameter for measurement						
VEC IE VGE	Power	Comm.				
🗸 Display		FFFF00				
Name	VEC					
Channel	CH1	V				
Conversion ratio	1.0					
dV/dt range	10%	~ 90%				
Smoothing	Off	V				

Fig 4.16 V_{EC} / V_{AK} Tab

Table 4.16 V_{EC} / V_{AK} Tab Setting

Parameter	Description	Default	Range	Resolution
	Analysis is performed by multiplying the	1.0	0.1 to 1000	0.1
Conversion ratio	waveform value imported by the DS-8000 main			
	unit software by a conversion factor.			
	Sets the range over which dV/dt is to be	10% to	1% to 99%	1%
	determined.	90%		
dV/dt range	Set the starting point (left setting box) and the			
	ending point (right setting box) in %. The bottom			
	level is 0% and the top level is 100%.			
Smoothing	Voltage waveform smoothing process setting	Off	Off, 3 points, 5 points	

$4.5.3 \ I_E \ / \ I_F \ Tab$

Sets parameters related to the current across the freewheeling diode (FWD) terminals. If the Measure type is IGBT or IPM, set the parameters related to emitter current (I_E); if the Measure type is MOSFET, set the parameters related to the forward current (I_D) of FWD.

Parameter for measurement						
VEC <i>IE</i> VGE	Power	Comm.				
🗸 Display		FF00FF				
Name	IE					
Channel	CH2	V				
Conversion ratio	1.0					
dI/dt range	90%	\sim 10%				
Trr range	90%	~ 50%				
Err range	10%	~ -5%				
Smoothing	Off	V				

Fig 4.17 $I_{\rm E}$ / $I_{\rm F}$ Tab

Table 4.17 $I_{E}\,/\,I_{F}$ Tab Setting

Parameter	Description	Default	Range	Resolution
	Analysis is performed by multiplying the waveform	1.0	0.1 to 1000	0.1
Conversion ratio	value imported by the DS-8000 main unit software by			
	Sets the range over which dI/dt is to be determined	90% to	0% to 99%	1%
	Set the starting point (left setting box) and the ending	10%	070 00 9970	170
	point (right setting box) in %.			
dI/dt range	Level 0 (0A) is set as 0% , and the $+100\%$ reference			
	changes as follows depending on the I_E pulse			
	direction. $I_{\rm EP}$ falling type: Top level is $\pm 100\%$			
	IFP rising type: Bottom level is +100%			
	Sets the Trr range to be used when determining the Trr	90% to	1% to 99%	1%
Trr range	end point. Set the starting point (left setting box) and	50%		
	the ending point (right setting box) in %.			
	Set I_E level 0 (0A) as 0% and the I_E peak value as			
	Sets the I ₂ current level at the beginning and end of the	10% to	1% to 99%	1%
	reverse recovery loss (Err).	-5%	170 10 9970	170
	Set the starting point (left setting box) and the ending	_		
	point (right setting box) in %.			
Err range	Level 0 (0A) is set as 0%, and the $+100\%$ reference			
	changes as follows depending on the I_E pulse			
	direction.			
	I_{EP} rising type: Bottom level is $\pm 100\%$			
		Off	Off,	
Smoothing	Current waveform smoothing process setting		3 points,	
-			5 points	

4.5.4 VGE / VCIN / VGS Tab

If Measure type is "Reverse recovery," the V_{GE} / V_{CIN} / V_{GS} tabs are blank because there are no setting items in the V_{GE} / V_{CIN} / V_{GS} tabs.

Fig 4.18 V_{GE} / V_{CIN} / V_{GS} Tab

4.5.5 Power Tab

The Power Tab sets items related to power (POW). Power (POW) is calculated by the following formula.

$$POW = V_{EC} \times I_E$$

P	aramet	er fo	r meası	ireme	nt				
	VEC	IE	VGE	Рои	'er	Com	m.		
	V	Displ	ay				00	FF00	
	Leve	el O (fi	rom bot	ttom)	5 d	liv	▼		
	Unit				k٧	/	▼		
	kW/div (0:Auto)				0kW/div				
	Neg	ative	parts		Add as it is ▼				

Fig 4.19 Power Tab

Table 4.	18	Power	Tab	Setting
----------	----	-------	-----	---------

Parameter	Description	Default	Range	Resolution
Level 0 (from bottom)	Set the 0 level of the displayed waveform in terms of the number of graticules (div) from the bottom of the screen.	4 div	0 div to 9 div	1 div
Unit	Sets the SI prefix to be displayed in units of power.	kW	W, kW, MW	
kW/div (0:Auto)	Sets the power unit per div. If blank or 0, it is automatically calculated.	0	0 kW/div to 100 kW/div	1 kW/div
Negative parts	Sets the treatment for negative values when calculating switching losses.	Add as it is	Add as it is, Exclude, Add Absolute	

4.5.6 **Result of analysis** The table below shows the meaning of the analysis results.

Re	esult of analy.	sis	Setup		
R	esult of analy	/sis -	-Reverse r	ecoverv	
	Item	<u>'</u>	Value	Unit	
	VEC		562.487	V	
	IE		148.938	А	
	VECP		623.300	V	
	IEP		323.338	А	
	Err		12.505	mJ	
	trr		0.192	μs	
	Irr		174.400	А	
	Qrr		16.742	μC	
	Power Max		-79.618	kW	
	dV/dt		8.711	kV/µs	
	dV/dt Max		11.083	kV/μs	
	dl/dt		0.000	A/µs	
	dI/dt Max		-2.133	kA/μs	
	Qrr2		30.556	μC	

Fig 4.20 Result of analysis display

Table 4.19 Result of analysis

Res	ult of Ana	lysis	Description	
IGBT	IPM	MOSFET		
V _{EC}		V _{AK}	(Top level - Bottom level) of V_{EC} or V_{AK}	V
IE		$I_{\rm F}$	(Top level – Level 0 (0 A)) of I_E or I_F	Α
VECP		VAKP	(Peak level - Bottom level) of V _{EC} or V _{AK}	V
			It depends on the direction of the I _E pulse direction.	Α
IEP		I _{FP}	• I _{EP} falling type: I _E top level - I _E minus peak level	
			• IEP rising type: IE plus peak level - IE bottom level	
			Reverse Recovery Loss (mJ) and is determined between the points below.	J
	Err		Start point: Switching loss measurement start point of IE	
			• End point: Switching loss measurement end point of IE	
			Reverse Recovery Time	S
Trr			Time between the crossing point of the dI/dt line and IE level 0 and the crossing	
			point of the Trr range interpolation line and IE level 0	
	Irr		Reverse Recovery Current	Α
	111		Absolute value of (I_E peak level - I_E level 0)	
	Orr		Reverse Recovery Charge Amount	С
	QII		$(Irr * Trr) / 2 (\mu C)$	
			It depends on the direction of the I _E pulse direction.	W
]	Power Max		 I_{EP} falling type: - peak value of POW waveform 	
			• IEP rising type: +peak value of POW waveform	
	dV/dt		Start-to-end slope in the dV/dt range of V_{EC} or V_{AK}	V/s
dV/dt Max		1	Maximum value in dV/dt of each data within the dV/dt range of V_{EC} or V_{AK}	V/s
			Start-to-end slope in IE's dI/dt range	A/s
	41/4+		It depends on the direction of the I _E pulse direction.	
	ui/ut		• I _{EP} falling type: dI/dt has negative value	
			• IEP rising type: dI/dt has positive value	

	The following values within the dI/dt range.	A/s
dI/dt Max	• IEP falling type: Minimum value in dI/dt for each data	
	• IEP rising type: Maximum value in dI/dt for each data	
Qrr2	Integral value (area) of I _E or I _F between Err ranges _{\circ} (μ C)	С

4.6 Short circuit Measurement

This section describes the measurement parameter settings and analysis results when "Measure type" is set to "Short circuit".

Measure type 🔵 Turn on 🔵 Turn off 📄 Reverse recovery 🔵 Short circuit

4.6.1 Short circuit Parameters and Analysis Results

The relationship between measurement parameters and analysis results for short-circuit waveforms is shown in the figure below.

Fig 4.21 Measurement parameters and analysis results for short circuit measurement

4.6.2 V_{CE} / V_{DS} Tab If the Measure type is IGBT or IPM, set the parameters related to collector to emitter voltage (V_{CE}); if the Measure type is MOSFET, set the parameters related to drain to source voltage (V_{DS}).

Parameter for measurement						
VCE IC VGE	Power	Comm.				
🗸 Display		FFFF00				
Name	VCE					
Channel	CH1	V				
Conversion ratio	1.0					
Smoothing	Off	V				

Fig 4.22 V_{CE} / V_{DS} Tab

Parameter	Description	Default	Range	Resolution
	Analysis is performed by multiplying the	1.0	0.1 to 1000	0.1
Conversion ratio	waveform value imported by the DS-8000			
	main unit software by a conversion factor.			
Smaathing	Voltage waveform smoothing process	Off	Off, 3 points,	
Smoothing	setting		5 points	

$4.6.3 \ I_C \ / \ I_D \ Tab$

If the Measure type is IGBT or IPM, set the parameters related to collector current (I_c); if the Measure type is MOSFET, set the parameters related to drain current (I_D).

Fig 4.23 $I_{C}\,/\,I_{D}$ Tab

Table 4.21 $I_{\rm C}\,/\,I_{\rm D}$ Tab Setting

Parameter	Description	Default	Range	Resolution
Conversion ratio	Analysis is performed by multiplying the waveform value imported by the DS-8000 main unit software by a conversion factor.	1.0	0.1 to 1000	0.1
Esc range	Sets the range over which the switching loss Esc is to be determined. Set the starting point (left setting box) and the ending point (right setting box) in %. Determine Esc with I _C level 0 (0A) as 0% and I _C top level as 100%.	10%	1% to 99%	1%
Smoothing	Current waveform smoothing process setting	Off	Off, 3 points, 5 points	

4.6.4 VGE / VCIN / VGS Tab

When Measure type is set to "Reverse recovery", the V_{GE} / V_{CIN} / V_{GS} tabs are blank because there are no setting items in these tabs.

Fig 4.24 V_{GE} / V_{CIN} / V_{GS} Tab

4.6.5 Power Tab

The Power Tab sets items related to power (POW). Power (POW) is calculated by the following formula.

$$POW = V_{CE} \times I_C$$

Parameter for measurement						
VCE IC VGE Pow	<i>ver</i> Comm.					
🗸 Display	00FF00					
Level 0 (from bottom)	5 div 🔻					
Unit	kW 🔻					
kW/div (0:Auto)	0kW/div					
Negative parts	Add as it is ▼					

Fig 4.25 Power Tab

Parameter	Description	Default	Range	Resolutio
				n
Level 0 (from bottom)	Set the 0 level of the displayed waveform in terms of the number of graticules (div) from the bottom of the screen.	4 div	0 div to 9 div	1 div
Unit	Sets the SI prefix to be displayed in units of power.	kW	W, kW, MW	
kW/div (0:Auto)	Sets the power unit per div. If blank or 0, it is automatically calculated.	0	0 kW/div to 100 kW/div	1 kW/div
Negative parts	Sets the treatment for negative values when calculating switching losses.	Add as it is	Add as it is, Exclude, Add Absolute	

4.6.6 **Result of analysis** The table below shows the meaning of the analysis results.

Re	esult of analy.	<i>sis</i> Setup				
R	Result of analysis -Short circuit					
	Item	Value	Unit			
	VCE	770.032	V			
	VCEP	1.096	kV			
	ICP	610.000	А			
	Esc	119.277	mJ			
	Power Max	443.680	kW			
			_			
			_			

Fig 4 26	Result	of ana	lvsis	display
11g 4.20	Result	or ana	19515	uispiay

Table 4.23	Result of ana	lvsis
14010 1120	iteball of alla	1,010

Result Analysis		vsis	Description	Unit
IGBT	IPM	MOSFET		
Vc	Е	V _{DS}	(Top level – Level 0 (0 V)) of V_{CE} or V_{DS}	V
VCI	EP	VDSP	$(\text{Peak} - \text{Level}(0 \text{ V})) \text{ of } V_{\text{CE}} \text{ or } V_{\text{DS}}$	V
ICP IDP		IDP	$(Pak - Level 0 (0 A) of I_C or I_{DP})$	А
			Turn-off loss. Energy loss (mJ) in the following ranges	J
Esc			Start point: Switching loss measurement start point of Ic	
			 End point: Switching loss measurement end point of I_C 	
Power Max		X	+ Peak value of Power (POW) waveform	W

Chapter 5 Appendix

5.1 CSV file format in "Input from file" The CSV file format for "Input from file" is as follows.

CSV Format Code	Description
Time/Point,1E-09	Specifies the sampling interval in NR3 format. If omitted, it is interpreted as 1E-09 sec.
Calc Range(Address),317,633	The analysis range is specified by address. If omitted, the range is from (data length/3) to (data length * 2/3).
//Wave Data	This is a comment line and may be omitted.
VCE(V),IC(A),VGE(V),POW(W)	This is the name of each waveform data. If it is omitted, subsequent CSV data will be treated as an array in this order.
105,-2,-15,-210	Thereafter, the waveform data is enumerated as CSV format.
105,-2,-16.25,-210	If at least VCE(V) and IC(A) data exist, it can be read. The maximum number of data is 1,000,000.
106.25,-0.4375,-14.375,-46.48438	
106.25,-2,-15.625,-212.5	
103.75,-3.5625,-15,-369.6094	
103.75,1.125,-15.625,116.7188	
103.75,1.125,-15.625,116.7188	
102.5,1.125,-15.625,115.3125	
102.5,-0.4375,-14.375,-44.84375	
<eof></eof>	End-of-file code.

5.2 Data Format at Save

The data format for Save is shown below.

Data at Save	Description
//Data File	Indicates what was selected in Type.
Type,IGBT	
//Common Parameter	Indicates what was selected in Measure type.
Type, Turn On	
//Parameter	Indicates the contents of "Parameter for measurement".
VCE Input Ch,1	
VCE Conv. Rate.1	
VCE Smoothing(Points),No	
VCE Level0.0	
VCE SWL Level(%),10	
VCE dV/dt Range,90,10	
IC Input Ch,2	
IC Conv. Rate,1	
IC Smoothing(Points),No	
IC Level0,0	
IC SWL Level(%),10	
IC Top Sel/Manual Value(V),0,1	
Tr Range(Start:End)(%),10,90	
Trr Range(Start:End)(%),90,50	
VGE Input Ch,3	
VGE Conv. Rate,1	
VGE Smoothing(Points),No	
VGE Level0,0	
VGE ton Start Level(%),0V	
Energy Process Type,0	
//Result	Indicates the contents of "Result of Analysis".
VCE(V),99.873962402344	
IC(A),73.77640998506	
ICP(V),201.629638671875	
Irr(A),126.59761345244	
ton(µs),0.284	
Tr(μs),0.052	
tdon(µs),0.232	
Eon(mJ),3.538273546919	
tcon(µs),0.72	
Trr(µs),0.18	
Power Max(kW),5424.095690250397	
dIdt(A/µs),1135.021692077842	
dIdt Max(A/µs),2343.75	
(-)dIdt(A/µs),-1947.655591576002	
dVdt(V/μs),-493.204752604167	
dVdt Max(V/µs),-3125.000000000003	
//DSO Setup	Indicates the contents of the waveform data and the analysis range.
Wave Length(Points),6002	
Time/Point,2e-09	
Calc Range(Address),1,6000	
//Wave Data	Waveform data offset values and waveform data represented in CSV format.
VCE Offset,0	
IC Offset,0	
VGE Offset,0	
VCE(V),IC(A),VGE(V),POW(W),TIME(s)	
105.341,-1.0376,-12.0941,-109.301,-6e-06	
104.248,-0.610352,-14.7797,-63.628,-5.998e-06	
105.817,-1.31836,-16.5176,-139.504,-5.996e-06	
104.614,-2.31934,-14.4852,-242.636,-5.994e-06	
107.239,-2.0874,-15.3687,-223.85,-5.992e-06	
103.833,-3.63159,-13.765,-377.079,-5.99e-06	
105.634,-2.47803,-15.3534,-261.763,-5.988e-06	
105.133,-2.28882,-13.6627,-240.63,-5.986e-06	
104.639,-2.76489,-15.4968,-289.315,-5.984e-06	
104.95,-3.50952,-15.0986,-368.324,-5.982e-06	
<eof></eof>	End-ot-tile code.

DS-821(DS8K SWA-SOFT)

IWATSU